[BK Intelligence System Semiconductor Invited Seminar]
The Al Metamorphosis: From Silicon Valley to Global
Society - Technology, Consciousness, and Human Impact

Sunghee Yun

Co-founder & CTO - Al Technology & Biz Dev @ Erudio Bio, Inc.

About Speaker

- Co-founder & CTO @ Erudio Bio, San Jose & Novato, CA, USA
- Advisor & Evangelist @ CryptoLab, Inc., San Jose, CA, USA
- Chief Business Development Officer @ WeStory.ai, Cupertino, CA, USA
- Advisory Professor, Electrical Engineering and Computer Science @ DGIST, Korea
- Adjunct Professor, Electronic Engineering Department @ Sogang University, Korea
- Global Advisory Board Member @ Innovative Future Brain-Inspired Intelligence System Semiconductor of Sogang University, Korea
- KFAS-Salzburg Global Leadership Initiative Fellow @ Salzburg Global Seminar, Salzburg, Austria
- Technology Consultant @ Gerson Lehrman Gruop (GLG), NY, USA
- Co-founder & CTO & Head of Global R&D & Chief Applied Scientist & Senior Fellow
 Gauss Labs, Inc., Palo Alto, CA, USA

The Al Metamorphosis

•	Senior Applied Scientist @ Mobile Shopping Team, Amazon.com, Inc., Vancou Canada	ver, BC - 2020
•	Principal Engineer @ Software R&D Center of DS Division, Samsung, Korea	- 2017
•	Principal Engineer @ Strategic Marketing & Sales Team, Samsung, Korea	- 2016
•	Principal Engineer @ DT Team of DRAM Development Lab, Samsung, Korea	- 2015
•	Senior Engineer @ CAE Team - Samsung, Korea	- 2012
•	MS & PhD - Electrical Engineering @ Stanford University, CA, USA	- 2004
•	Development Engineer @ Voyan, Santa Clara, CA, USA	- 2001
•	BS - Electrical Engineering @ Seoul National University, Seoul, Korea	- 1998

The AI Metamorphosis

Highlight of Career Journey

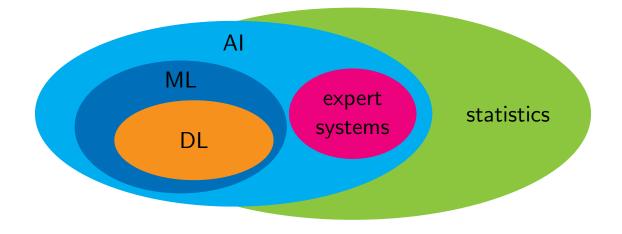
- BS in EE @ SNU, MS & PhD in EE @ Stanford University
 - Convex Optimization Theory, Algorithms & Software
 - advised by Prof. Stephen P. Boyd
- Principal Engineer @ Samsung Semiconductor, Inc.
 - AI & Convex Optimization
 - collaboration with DRAM/NAND Design/Manufacturing/Test Teams
- Senior Applied Scientist @ Amazon.com, Inc.
 - e-Commerce Als time-series anomaly detection, deep reinforcement learning & recommender system
 - Jeff Bezos's project increase sales by \$200M via Amazon Mobile Shopping App
- Co-founder & CTO & Head of Global R&D & Chief Applied Scientist & Senior Fellow
 @ Gauss Labs, Inc.
- Co-founder & CTO Al Technology & Business Development @ Erudio Bio, Inc.

The Al Metamorphosis

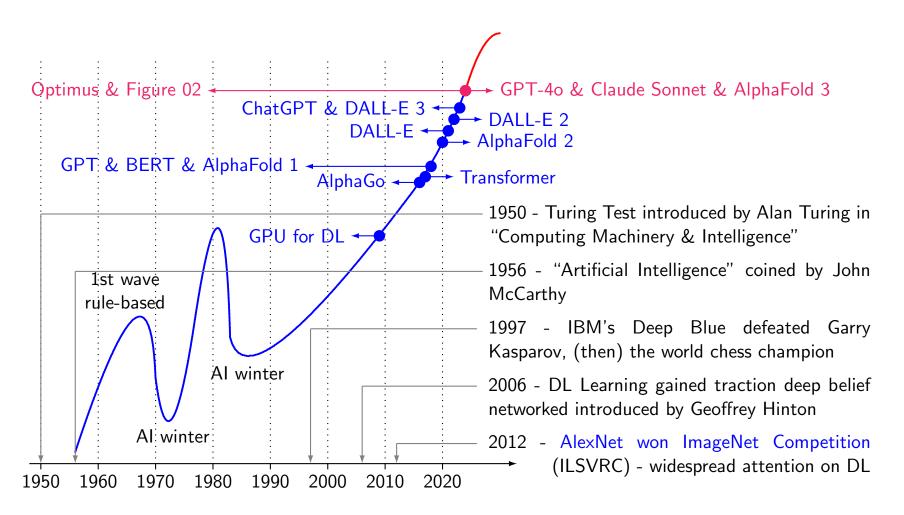
Today

Artificial Intelligence	- 5
 Al history, recent significant Al achievements, is Al hype? 	
Multimodal Al Agents	- 25
 implications of LLM, future of society powered by AI agents 	
Some Important Questions	- 32
 Al ethics, biases, consciousness, reasoning, belief system 	
 Empowering Humanity for Future Enriched by AI 	- 66
 KFAS-Salzburg Global Leadership Initiative 	
 reclaiming technology for Humanity 	
 Appendices 	
 serendipities around Als 	- 79
 Al in biotech 	- 81
 Selected references 	- 99
• References	- 101

The AI Metamorphosis


Artificial Intelligence

Definition and History


Definition of AI

Al is

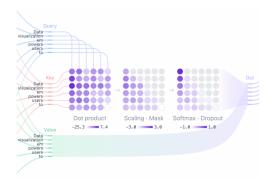
- technology enabling machines to do tasks requiring human intelligence, such as learning, problem-solving, decision-making & language understanding
- not one thing encompass range of technologies, methodologies & applications
- relationship of AI, statistics, ML, DL, NN & expert system [HGH⁺22]

History of Al

Significant Al Achievements - 2014 - 2024

Deep learning revolution

- 2012 2015 DL revolution¹
 - CNNs demonstrated exceptional performance in image recognition, e.g., AlexNet's victory in ImageNet competition
 - widespread adoption of DL learning in CV transforming industries
- 2016 AlphaGo defeats human Go champion
 - DeepMind's AlphaGo defeated world champion in Go, extremely complex game believed to be beyond Al's reach
 - significant milestone in RL Al's potential in solving complex & strategic problems



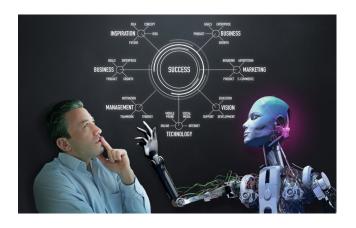
 $^{^{1}}$ DL: deep learning, CNN: convolutional neural network, CV: computer vision, RL: reinforcement learning

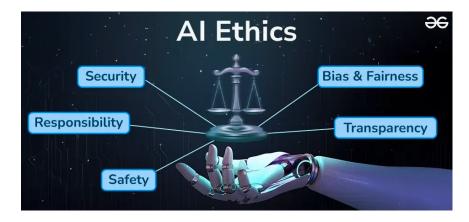
Transformer changes everything

- 2017 2018 Transformers & NLP breakthroughs²
 - Transformer (e.g., BERT & GPT) revolutionized NLP
 - major advancements in, e.g., machine translation & chatbots
- 2020 Al in healthcare AlphaFold & beyond
 - DeepMind's AlphaFold solves 50-year-old protein folding problem predicting 3D protein structures with remarkable accuracy
 - accelerates drug discovery and personalized medicine offering new insights into diseases and potential treatments

²NLP: natural language processing, GPT: generative pre-trained transformer

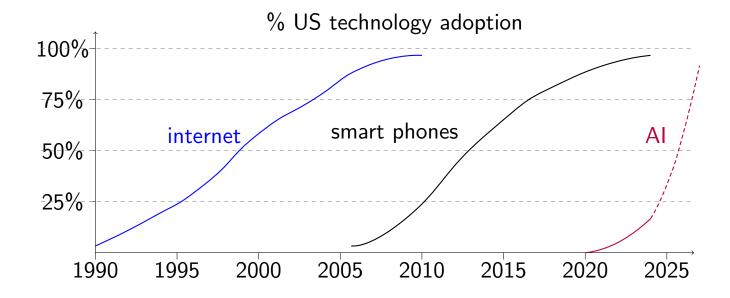
Lots of breakthroughs in AI technology and applications in 2024


- proliferation of advanced AI models
 - GPT-40, Claude Sonnet, Llama 3, Sora
 - transforming industries such as content creation, customer service, education, etc.
- breakthroughs in specialized Al applications
 - Figure 02, Optimus, AlphaFold 3
 - driving unprecedented advancements in automation, drug discovery, scientific understanding - profoundly affecting healthcare, manufacturing, scientific research

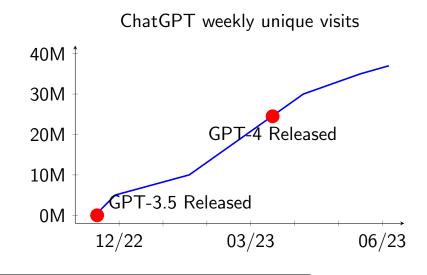


Transformative impact of AI - reshaping industries, work & society

- accelerating human-Al collaboration
 - not only reshaping industries but altering how humans interact with technology
 - Al's role as collaborator and augmentor redefines productivity, creativity, the way we address global challenges, e.g., sustainability & healthcare
- Al-driven automation transforms workforce dynamics creating new opportunities while challenging traditional job roles
- ethical AI considerations becoming central not only to business strategy, but to society as a whole influencing regulations, corporate responsibility & public trust



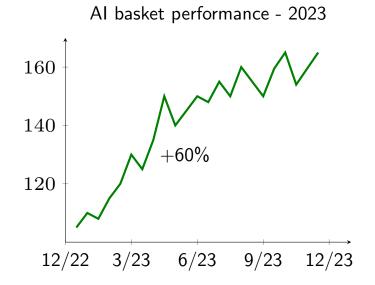
Recent Advances in Al

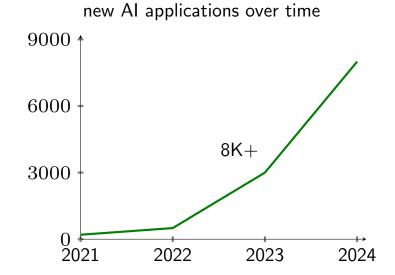

Where are we in AI today?

- sunrise phase currently experiencing dawn of AI era with significant advancements and increasing adoption across various industries
- early adoption in early stages of AI lifecycle with widespread adoption and innovation across sectors marking significant shift in technology's role in society

Explosion of AI ecosystems - ChatGPT & NVIDIA

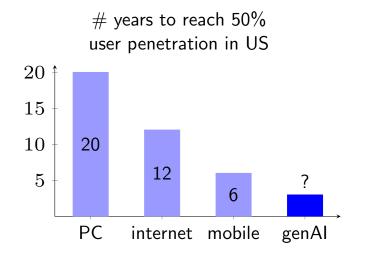
- took only 5 months for ChatGPT users to reach 35M
- NVDIA 2023 Q2 earning exceeds market expectation by big margin \$7B vs \$13.5B
 - surprisingly, 101% year-to-year growth
 - even more surprisingly gross margin was 71.2% up from 43.5% in previous year³

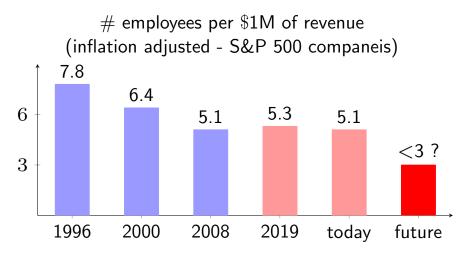




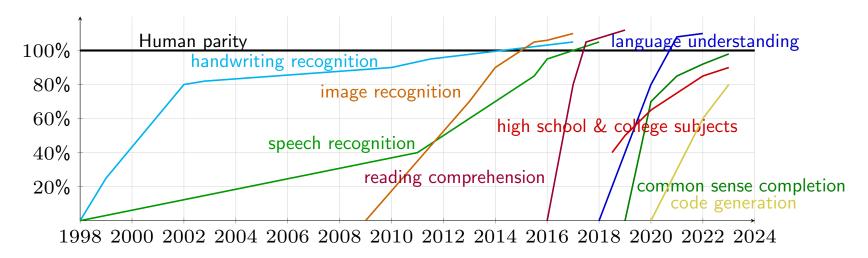
 $^{^3}$ source - Bloomberg

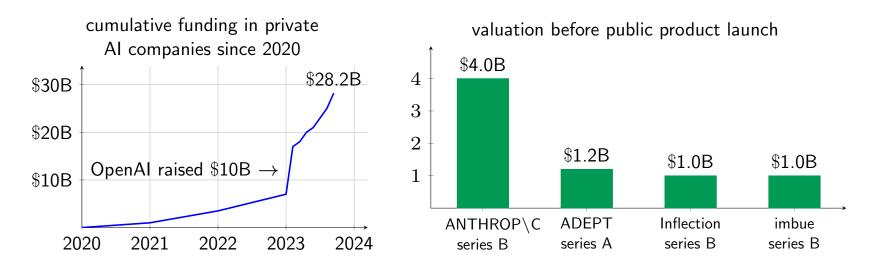
Explosion of AI ecosystems - AI stock market


- Al investment surge in 2023 portfolio performance soars by 60%
 - Al-focused stocks significantly outpaced traditional market indices
- over 8,000 new Al applications developed in last 3 years
 - applications span from healthcare and finance to manufacturing and entertainment

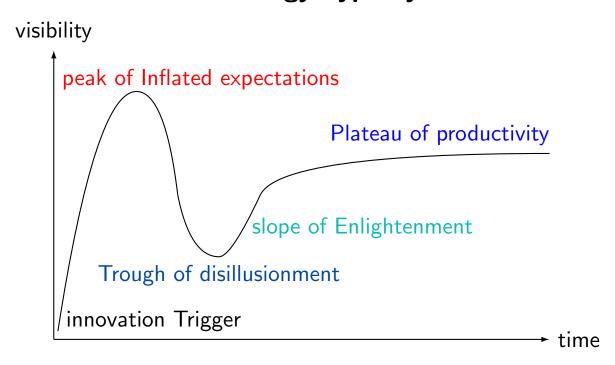


Al's transformative impact - adoption speed & economic potential


- adoption has been twice as fast with platform shifts suggesting
 - increasing demand and readiness for new technology improved user experience & accessibility
- Al's potential to drive economy for years to come
 - 35% improvement in productivity driven by introduction of PCs and internet
 - greater gains expected with AI proliferation


Al getting more & more faster

- steep upward slopes of AI capabilities highlight accelerating pace of AI development
 - period of exponential growth with AI potentially mastering new skills and surpassing human capabilities at ever-increasing rate
- closing gap to human parity some capabilities approaching or arguably reached human parity, while others having still way to go
 - achieving truly human-like capabilities in broad range remains a challenge


Massive investment in Al

- explosive growth cumulative funding skyrocketed reaching staggering \$28.2B
- OpenAI significant fundraising (=\$10B) fueled rapid growth
- valuation surge substantial valuations even before public products for stella companies
- fierce competition for capital among AI startups driving innovation & accelerating development
- massive investment indicates strong belief in & optimistic outlook for potential of AI to revolutionize industries & drive economic growth

Is Al hype?

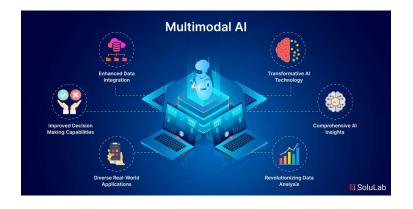
Technology hype cycle

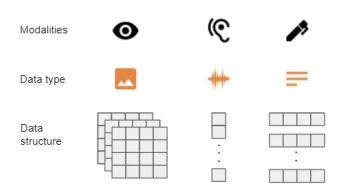
- innovation trigger technology breakthrough kicks things off
- peak of inflated expectations early publicity induces many successes followed by even more
- trough of disillusionment expectations wane as technology producers shake out or fail
- slope of enlightenment benefit enterprise, technology better understood, more enterprises fund pilots

Fiber vs cloud infrastructure

- fiber infrastructure 1990s
 - Telco Co's raised \$1.6T of equity & \$600B of debt
 - bandwidth costs decreased 90% within 4 years
 - companies Covage, NothStart, Telligent,
 Electric Lightwave, 360 networks,
 Nextlink, Broadwind, UUNET, NFS
 Communications, Global Crossing, Level
 3 Communications
 - became public good

- cloud infrastructure 2010s
 - entirely new computing paradigm
 - mostly public companeis with data centers
 - big 4 hyperscalers generate \$150B+ annual revenue

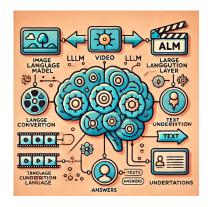

Yes & No


characteristics of hype cycles	speaker's views
value accrual misaligned with investment	 OpenAl still operating at a loss; business model still not clear
	ullet gradual value creation across broad range of industries and technologies (e.g., CV, LLMs, RL) unlike fiber optic bubble in 1990s
overestimating timeline & capabilities of technology	 self-driving cars delayed for over 15 years, with limited hope for achieving level 5 autonomy AI, however, has proven useful within a shorter 5-year span, with enterprises eagerly adopting
lack of widespread utility due to technology maturity	 Al already providing significant utility across various domains
	 vs quantum computing remains promising in theory but lacks widespread practical utility

Multimodal AI Agents

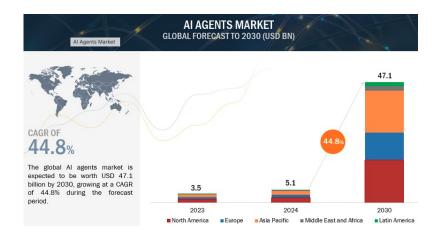
Multimodal learning

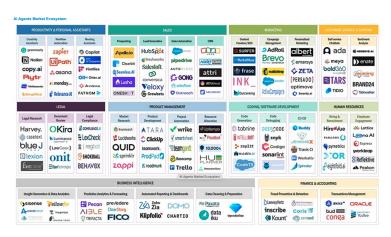
- understand information from multiple modalities, e.g., text, images, audio, video
- representation learning methods
 - combine two representations or learn multimodal representations simultaneously
- applications
 - images from text prompt, videos with narration, musics with lyrics
- collaboration among different modalities
 - understand image world (open system) using language (closed system)



Implications of success of LLMs

- many researchers change gears towards LLM
 - from computer vision (CV), speach, music, video, even reinforcement learning
- LLM is not only about NLP . . . humans have . . .
 - evolved and optimized natural language structures for eons
 - handed down knowledge using this natural languages for thousands of years
 - (internal structure or representation of) natural language optimized via evolution through thousands of generation by evolution
- LLM connects non-linguistic world (open system) via languages (closed system)





Multimodal AI (mmAI) - definition & history

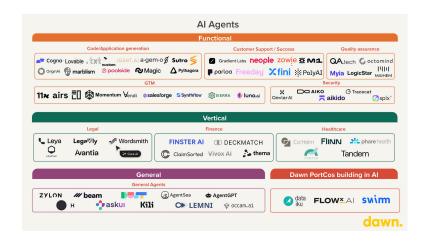
- mmAl systems processing & integrating data from multiple sources & modalities, to generate unified response / decision
- 1990s 2000s early systems initial research combining basic text & image data
- 2010s CNNs & RNNs enabling more sophisticated handling of multimodality
- 2020s modern multimodal models Transformer-based architectures handling complex multi-source data at highly advanced level
- mmAl *mimics human cognitive ability* to interpret and integrate information from various sources, leading to holistic decision-making

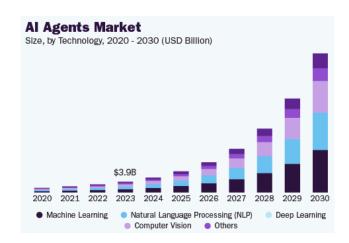
mmAI Technology

core components

- data preprocessing images, text, audio & video
- architectures unified Transformer-based (e.g., ViT) & cross-attention mechanisms / hybrid architectures (e.g., CNNs + LLMs)
- integration layers fusion methods for combining data representations from different modalities

technical challenges


- data alignment accurate alignment of multimodal data
- computational demand high-resource requirements for training and inferencing
- diverse data quality manage variations in data quality across modalities


advancements

- multimodal embeddings shared feature spaces interaction between modalities
- self-supervised learning leverage unlabeled data to learn representations across modalities

Al agents powered by multimodal LLMs

- foundation
 - integrate multimodal AI capabilities for enhanced interaction & decision-making
- components
 - perceive environment through multiple modalities (visual, audio, text), process using
 LLM technology, generate contextual responses & take actions
- capabilities
 - understand complex environments, reason across modalities, engage in natural interactions, adapt behavior based on context & feedback

Al agents - Present & Future

emerging applications

- scientific research agents analyzing & running experiments & generating hypotheses
- creative collaboration Al partners in design & art combining multiple mediums
- environmental monitoring processing satellite sensor data for climate analysis
- healthcare enhanced diagnostic combining imaging, e.g., MRI, with patient history
- customer experience virtual assistants understanding spoken language & visual cues
- autonomous vehicles integration of visual, radar & audio data

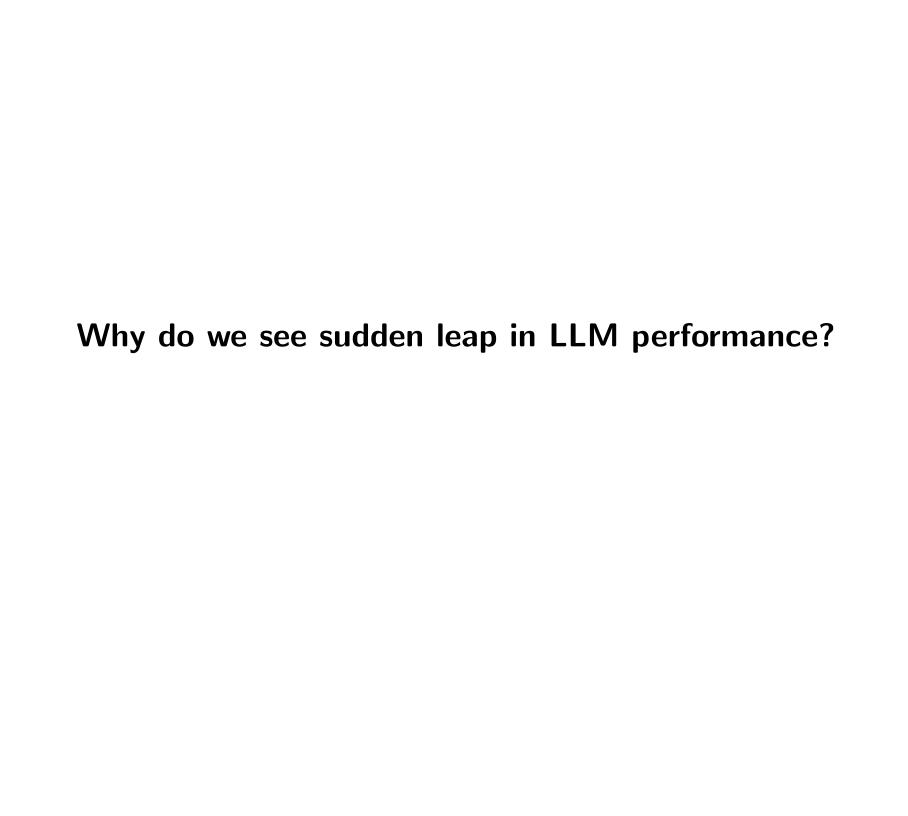
future

- ubiquitous AI agents seamless integration into everyday devices
- highly tailored personalized experience in education, entertainment & healthcare

Important Questions to be Asked

Some important questions around AI

- why human-level AI in the first place?
- what lies in very core of DL architecture? what makes it work amazingly well?
- biases that can hurt judgement, decision making, social good?
- ethical and legal issues
- consciousness, knowledge, belief, reasoning
- future of AI


Why human-level in the first place?

- lots of times, when we measure AI performance, we say
 - how can we achieve human-level performance, e.g., CV models?
- why human-level?
 - are all human traits desirable? are humans flawless?
 - aren't humans still evolving?
- advantage of AI over humans
 - e.g., self-driving cars can use extra eyes, GPS, computer network
 - e.g., recommendation system runs for hundreds of millions of people overnight
 - Al is available 24 / 7 while humans cannot
 - . . . critical advanages for medical assitance, emergency handling
 - Al does not make more mistakes because task is repetative and tedius
 - Al does not request salary raise or go on strike

What makes DL so successful?

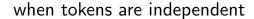
Factors constributing to astonishing success of DL

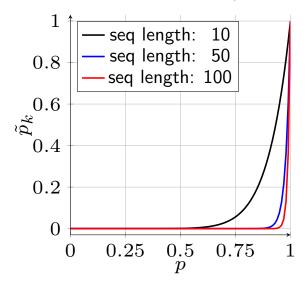
- analysis based on speaker's mathematical, numerical algorithmic & statistical perspectives considering hardware innovations
 - 30% universal approximation theorem? (partially) yes! but that's not all
 - function space of neural network is dense (math theory), i.e., for every $f: \mathbf{R}^n \to \mathbf{R}^m$, exists $\langle f_n \rangle$ such that $\lim_{n \to \infty} f_n = f$
 - **25%** architectures/algorithms tailored for each class of applications, e.g., CNN, RNN, Transformer, NeRF, diffusion, GAN, VAE, . . .
 - 20% data labeling expensive, data availability unlimited web text corpus
 - 15% computation power/parallelism Al accelerators, e.g., GPU, TPU & NPU
 - 10% rest Python, open source software, cloud computing, MLOps, . . .

Probability inferenced sequence is correct

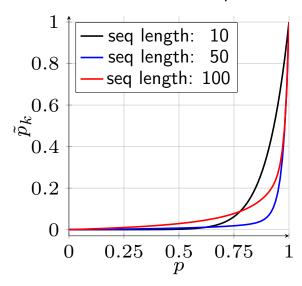
assume

- t_i ith token
- p_i probability that t_i is correct
- ho_i correlation coefficient between t_{i-1} & t_i
- $ilde{p}_k$ probability that (t_1,\ldots,t_k) are correct


recursion


$$\rho_{i} = \frac{\tilde{p}_{i} - \tilde{p}_{i-1}p_{i}}{\sqrt{\tilde{p}_{i-1}(1 - \tilde{p}_{i-1})p_{i}(1 - p_{i})}}$$

$$\Leftrightarrow \qquad \tilde{p}_{i} = \tilde{p}_{i-1}p_{i} + \rho_{i}\sqrt{\tilde{p}_{i-1}(1 - \tilde{p}_{i-1})p_{i}(1 - p_{i})}$$


Dramatic improvement of LLM near saturation

- do simulations for both independent & dependent cases
 - assume p_i are same for all i
- ullet (for both cases) sequence inference improves dramatically as p approaches 1
- this explains why we have observed sudden dramatic performance improvement of certain seq2seq learning technologies, e.g., LLM

when tokens are dependent

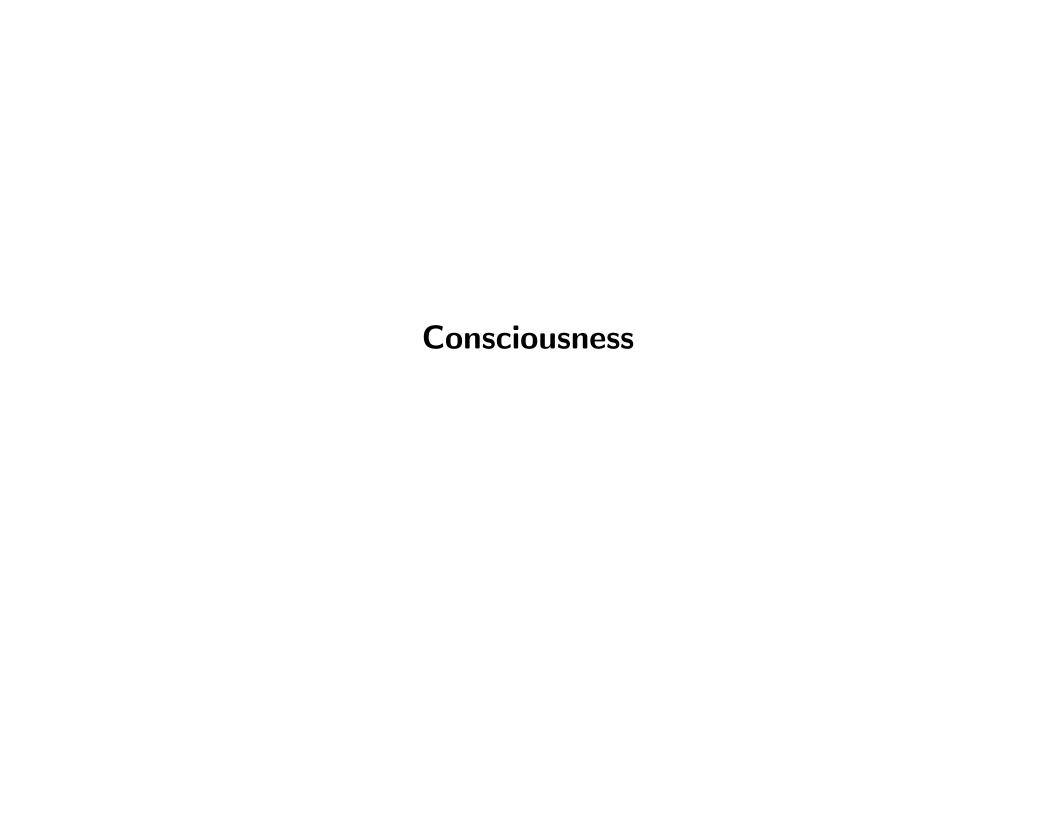
Biases - by Humans & Machines

Cognitive biases

- cognitive biases [Kah11]
 - confirmation bias, availability bias
 - hindsight bias, confidence bias, optimistic bias
 - anchoring bias, halo effect, framing effect, outcome bias
 - belief bias, negativity bias, false consensus,

LLM biases

- plausible with LLM
 - availability bias baised by imbalancedly available information
 - LLM trained by imbalanced # articles for specific topics
 - belief bias derive conclusion not by reasoning, but by what it saw
 - LLM eaisly inferencing what it saw, i.e., data it trained on
 - halo effect overemphasize on what prestigious figures say
 - LLM trained by imbalanced # reports about prestigious figures
- similar facts true for other types of ML models,
 - e.g., video caption, text summarization, sentiment analysis
- cognitive biases only human represent
 - confirmation bias, hindsight bias, confidence bias, optimistic bias, anchoring bias, negativity bias, framing effect


Ethical and Legal Issues

Ethics - possibilities & questions

- Al can be exploited by those who have bad intention to
 - manupilate / deceive people using manupilated data corpus for training
 - *e.g.*, spread false facts
 - induce unfair social resource allocation
 - e.g., medical insurance, taxation
 - exploit advantageous social and economic power
 - e.g., unfair wealth allocation, mislead public opinion
- Al for Good advocated by Andrew Ng
 - e.g., public health, climate change, disaster management
- should scientists and engineers be morally & politically conscious?
 - e.g., Manhattan project

Legal issues with ethical consideration - (hypothetical) scenarios

- scenario 1: full self-driving algorithm causes traffic accident killing people
 - who is responsible? car maker, algorithm developer, driver, algorithm itself?
- scenario 2: self-driving cars kill less people than human drivers
 - e.g., human drivers kill 1.5 people for 100,000 miles & self-driving cars kill 0.2 people for 100,000 miles
 - how should law makers make regulations?
 - utilitarian & humanistic perspectives
- scenario 3: someone is not happy with their data being used for training
 - "The Times sues OpenAl and Microsoft over Al use of copyrighted work" (Dec. 2023)
 - "Newspaper publishers in California, Colorado, Illinois, Florida, Minnesota and New York said Microsoft and OpenAl used millions of articles without payment or permission to develop ChatGPT and other products" (Apr. 2024)

Consciousness

- what is consciousness, anyway?
 - recognizes itself as independent, autonomous, valuable entity?
 - recognizes itself as living being, unchangeable entity?
- no agreed definition on consciousness exists yet
 - . . . and will be so forever
- does it have anything to do with the fact that humans are biologically living being?
- is SKYNET ever plausible (without someone's intention)?
 - can Al have desire to survive (or save earth)?

Utopia or dystopia - futile debates

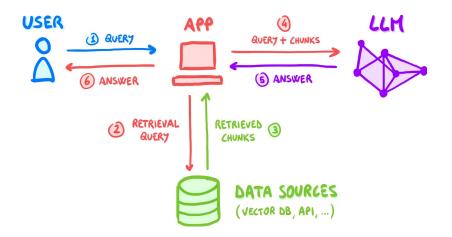
- not important questions (at all) I think . . .
- what we should focus on is not the possibilities of doomday or Judgment Day, but rather
 - our limits on controlling unintended impacts of Al
 - misuse by (greedy and bad) people possessing social,
 economic & political power
 - social good and welfare impaired by (exploiting) Al
- should concern
 - choice among utilitarianism, humanism, justice & equity
 - amend or improve laws and regulations
 - address ethical issues caused by AI

Knowledge, Belief, and Reasoning of Al

Does AI (or LLM) have knowledge or belief? Can it reason?

What categories of questions should they be in? engineering, scientific, philosophical, cognitive scientific . . . ?

Three surprises of LLM


- LLM is very different sort of animal . . . except that it is *not* an animal!
- unreasonable effectiveness of data [HNF09]
 - performance scales with size of training data
 - qualitative leaps in capability as models scale
 - tasks demanding human intelligence reduced to next token prediction
- focus on third surprise
 - "conditional probability model looks like human with intelligence"
 - making vulnerable to anthropomorphism
- examine it by throwing questions
 - "does LLM have knowledge and belief?"
 - "can it reason?"

What LLM really does!

- given prompt "the first person to walk on the Moon was", LLM responds with "Neil Armstrong". . . strictly speaking
 - it's not being asked who was the first person to walk on the Moon
 - what are being really asked is "given statistical distribution of words in vast public corpus of text, what words are most likely to follow 'The first person to walk on the Moon was'?"
- given prompt "after ring was destroyed, Frodo Baggins returned to", LLM responds with "the Shire"
 - on one level, it seems fair to say, you might be testing LLM's knowledge of fictional world of Tolkien's novels
 - what are being really asked is "given statistical distribution of words in vast public corpus of text, what words are most likely to follow 'After the ring was destroyed, Frodo Baggins returned to'?"

LLMs or systems in which they are embedded?

- crucial to distinguish between the two (for philosophical clarity)
 - LLM (bare-bones model) highly specific & well-defined function, which is conditional probability estimator
 - systems in which LLMs are embedded question-answering, news article summarization, screenplays generation, language translation

How ChatBot works using LLMs?

- conversational Al agent does in-context learning or few-shot prompting
- for example,
 - when the user enters who is the first person to walk on the Moon?
 - ChatBot, LLM-embedded system, feeds the following to LLM

User, a human, and BOT, a clever and knowledgeable AI agent.

User: what is 2+2?

BOT: the answer is 4.

User: where was Albert Einstein born?

BOT: he was born in Germany.

User: who is the first person to walk on the Moon?

BOT:

Knowledge, belief & reasoning around LLM

- not easy topic to discuss, or even impossible because
 - we do not have agreed definition of these terms especially in context of being asked questions like

does LLM have belief?
or
do humans have knowledge?

- let us discuss them in two different perspectives
 - laymen's perspective
 - cognitive scientific perspective

Laymen's perspective on knowledge, belief & reasoning

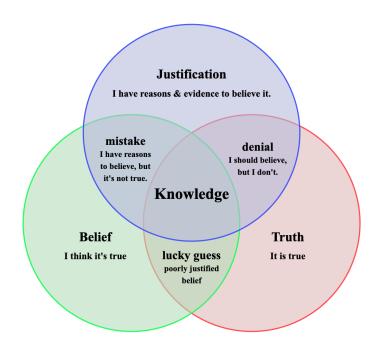
- does (good) LLM have knowledge?
 - Grandmother looks like it cuz when instructed "explaing big bang", it says
 "The Big Bang theory is prevailing cosmological model that explains the origin and evolution of the universe. . . . 13.8 billion years ago . . . "
- does it have belief?
 - Grandmother: I don't think so, e.g., it does not believe in God.
- can it reason?
 - Grandmother: seems like it! e.g., when asked "Sunghee is a superset of Alice and Beth is a superset of Sunghee. is Beth a superset of Alice?", it says "Yes, based on information provided, if Sunghee is a superset of Alice and Beth is a superset of Sunghee, then Beth is indeed a superset of Alice . . . "
- can it reason to prove theorem whose inferential structure is more complicated?
 - Grandmother: I'm not sure. actually, I don't know what you're talking about!

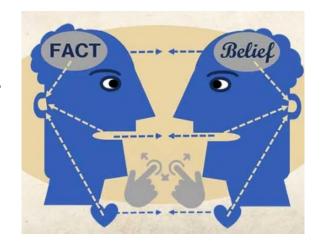
Knowledge

- could argue LLM "knows" which words follow which other words with high probability
- but, only in context of capacity to distinguish truth from falsehood, can we legitimately speak of "knowledge"!
- LLM(-embedded BOT)
 - can be said to "encode", "store", or "contain" knowledge
 - lacks means to use words "true" & "false" in all ways & in all contexts because . . .
 - does not inhabit the world we human language-users share!

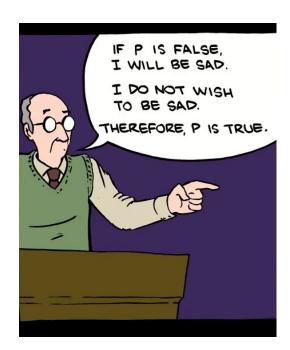
Belief

- nothing can count as belief about the world we share unless
 - it is against backdrop of "ability to update beliefs appropriately in light of evidence from that world" - (again) essential capacity to distinguish truth from falsehood
- change taking place in humans when acquiring or updating belief is
 - reflection of their nature as language-using animals inhabiting shared world with community of language-users
- then, what if LLM-embedded system updates LLM with outside world information?
 - even so, when interacting with AI systems based on LLMs, these grounds are absent!




Cognitive scientific perspective on knowledge

- does LLM have knowledge?
 - I don't think so.
- why?
 - when asked "who is Tom Cruise's mother?", it says "Tom Cruise's mother is Mary Lee Pfeiffer." However, this is nothing but "guessing" by conditional probability model the most likely following words after "Tom Cruise's mother is."
 - so we cannot say it really knows the fact!


Cognitive scientific perspective on belief

- for the discussion
 - we do not concern any specific belief
 - we concern prerequisites for ascribing any beliefs to Al system
- so does it have belief?
 - when a human being takes to Wikipedia and confirms some fact, what happens is not her language model update, but
 - reflection of her nature as language-using animal inhabiting shared world with a community of other language-users.
 - LLM does not have this ground, essential consideration when deciding whether it *really* had beliefs
 - so no, LLM cannot have belief!

Cognitive scientific perspective on reasoning

- note reasoning is *content neutral*
 - e.g., following logic is perfect regardless of truth of premises
 - hence, no access to outside world does *not* disqualify
- when asked "if humans are immortal, would Socrates have survived today?", LLM says
 - "... it's logical to conclude that Socrates would likely still be alive today. ... "
- is there fundamental difference compared to *true* reasoning?
- moreoever, LLM can mimic even multi-step reasoning whose inferencing structure is complicated using chainof-thoughts prompting, i.e., in-context learning or fewshort prompting,

Simple example showing LLM not possessing knowledge

User

"Who is Tom Cruise's mother?"

• LLM(-embedded question-answering system) (as of Jan 2022)

"Tom Cruise's mother is Mary Lee Pfeiffer. She was born Mary Lee South. . . . Information about his family, including his parents, has been publicly available, . . . "

User

"Who is Mary Lee Pfeiffer's son?"

• LLM(-embedded question-answering system) (as of Jan 2022)

"As of my last knowledge update in January 2022, I don't have specific information about Mary Lee Pfeiffer or her family, including her son. . . . "

Risk of anthropomorphization

- unfortunately, contemporary LLMs are too powerful, too versatile, and too useful to accept previous arguments!
- maybe, it is o.k. for laymen to (mistakenly) anthropomorphize LLM(-embedded systems)
- however, imperative for AI researchers, scientists, engineers & practitioners to have rigorous understanding in these aspects especially when
 - talk to or advise *policy makers, media, etc.*
 - consult or collaborate with professionals in areas such as philosophy, ethics, law, etc.
 - e.g., to address and prepare negative soceital and economic impacts

Moral

• AI, e.g., LLM, shows incredible utility and commercial potentials, hence we should

- make informed decisions about trustworthiness and safety
- avoid ascribing capacities they lack take best usage of remarkable capabilities of AI
- today's AI is so powerful, so (seemingly) convincingly intelligent
 - obfuscate mechanism
 - actively encourage anthropomorphism with philosophically loaded words like "believe" and "think"
 - easily mislead people about character and capabilities of Al
- matters not only to scientists, engineers, developers, and entrepreneurs, but also
 - general public, policy makers, media people

Empowering Humanity for FutureEnriched by AI

Blessings & Curses of Al

Blessings

- advancements in healthcare & improved quality of life
 - much faster & more accurate diagnosis, far superior personalized medicine, accelerated drug discovery, assistive technologies
- economic growth & efficiency
 - automation to increase productivity and reduce cost, far superior decision-making
- environmental solutions
 - climate change prediction, global warming effect mitigation, solutions for sustainability
- safety & security
 - natural disaster prediction & relief, cybersecurity

Curses

- job displacement & overall impacts on labor market
 - millions of jobs threatened, wealth gap widened
- bias & inequality, misinformation & manipulation
 - existing human biases, both conscious and unconscious, perpetuated through Als,
 asymmetric accessibility to advanced Al technologies by nations & corporations
- ethical dilemmas
 - infringing privacy & human rights, accountability for weapon uses and damages by Al
- environmental costs
 - significant energy for training AI models, waste generated by obsolescent AI hardware

Salzburg Global Seminar

KFAS-Salzburg Global Leadership Initiative

 "Uncertain Futures and Connections Reimagined: Connecting Technologies" - 41 global leaders convened from 4-Dec to 8-Dec, 2024 @ Schloss Leopoldskron in Salzburg, Austria

- My working group was "Technology, Growth, and Inequality: The Case of Al"
 - International Cooperation Officer (Portugal)
 - Gender Equality, Disability Inclusion Consultant, UN Women (Lithuania)
 - Assistant Professor @ Lincoln Alexander School of Law (Canada)
 - Research Associate @ Luxembourg Institute of Socio-Economic Research
 - Policy Officer & Delegation of the EU Union (India)
- blog: Bridging Technology & Humanity Reflections from Lyon, Salzburg, and München

KFAS-Salzburg Global Leadership Initiative

Salzburg Global photo collections

Empowering Humanity

Al capacity building - scientists, engineers & practitioners

- ethics and responsible AI education or campaign via interdisciplinary collaboration
 - foster continuous learning programs on AI risks, bias & societal impacts
- bias detection & mitigation
 - bias-detection tools to identify & reduce discrimination in data & models
 - regular fairness audits
- transparency & explainability
 - explainable AI (xAI) techniques, frameworks like Model Cards for transparency
- environmental impact awareness
 - reduce Al's carbon footprint, advocate for sustainable Al development practices

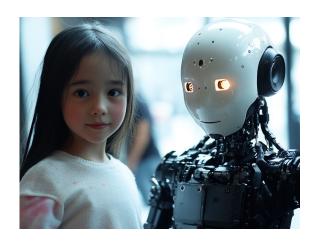
Al capacity building - lawmakers & policy makers

problems

- difficulties in understanding of rapidly evolving AI technologies
- lead to reactive or insufficient regulation
- proposed solutions
 - develop comprehensive regulatory frameworks addressing transparency, bias & privacy concerns
 - gender bias, racial bias, hallucinations
 - foster public debates on ethical Al use & societal implications
 - introduce policies to limit spread of Al-generated misinformation,



Participatory social agreements

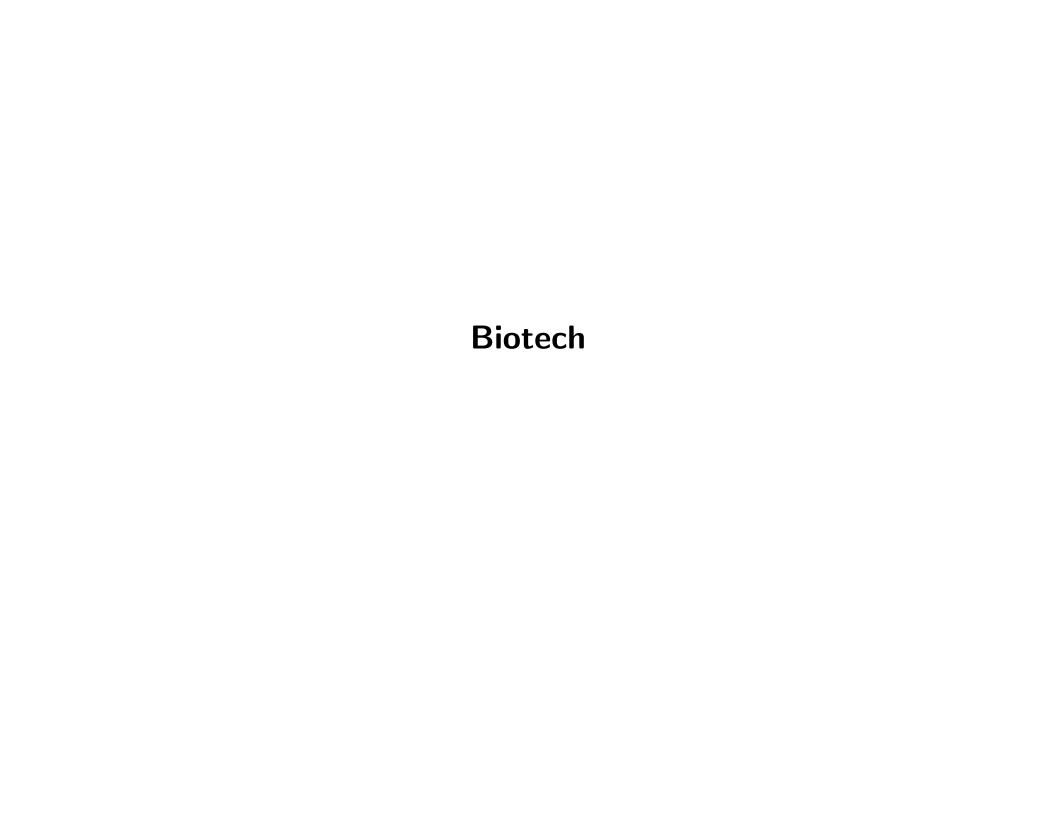

- open data frameworks including data sovereignty, regulation of data transfer, storage & localization
- corporate social responsibility, extra-territorial obligations & environmental protection
 - including outside the jurisdiction of the country
- labour and employment displacements, tax cuts & algorithmic impact assessments
 - including remedies for AI harms and enforcements

Reclaiming technology for Humanity

- strategic approach to Al development
 - leverage very technologies alienating humans to strengthen human connection
 - transform automation from replacement to enhancement of human capabilities
 - leverage technological scale to address fundamental human needs
- paradigm shift in technological implementation
 - recognize the duality of advanced technologies
 - systematically channel AI capabilities toward human-centric solutions
 - convert technological challenges into opportunities for human advancement

Appendix

Serendipities around Als

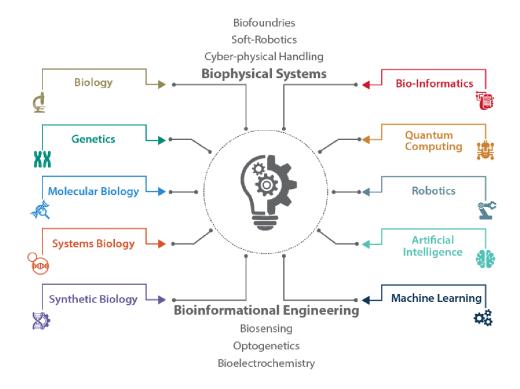

Serendipity or inevitability?

- What if Geoffrey Hinton had not been a persistent researcher?
- What if symbolists won AI race over connectionists?
- What if attention mechanism did not perform well?
- What if Transformer architecture did not perform super well?
- What if OpenAI had not been successful with ChatGPT in 2022?
- What if Jensen Huang had not been crazy about making hardware for professional gamers?
- Is it like Alexander Fleming's Penicillin?
- Or more like Inevitability?

Al & Biotech

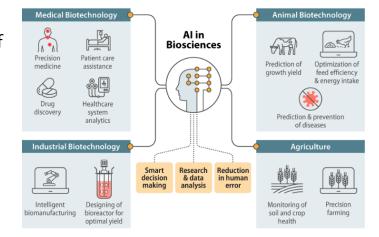
Al in biology

- Al has been used in biological sciences, and science in general
- ullet Al's ability to process large amounts of raw, unstructured data (e.g., DNA sequence data)
 - reduces time and cost to conduct experiments in biology
 - enables others types of experiments that previously were unattainable
 - contributes to broader field of engineering biology or biotechnology
- ullet Al increases human ability to make direct changes at cellular level and create novel genetic material (e.g., DNA and RNA) to obtain specific functions.

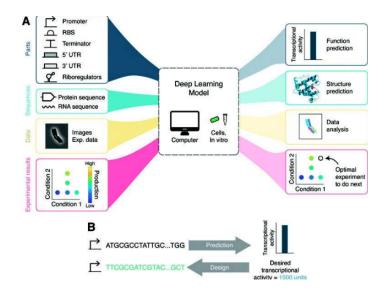

Biotech

biotechnology

- is multidisciplinary field leveraging broad set of sciences and technologies
- relies on and builds upon advances in other fields such as nanotechnology & robotics, and, increasingly, AI
- enables researchers to read and write DNA
 - sequencing technologies "read" DNA while gene synthesis technologies takes sequence data and "write" DNA turning data into physical material
- 2018 National Defense Strategy & senior US defense and intelligence officials identified emerging technologies that could have disruptive impact on US national security [Say21]
 - artificial intelligence, lethal autonomous weapons, hypersonic weapons, directed energy weapons, biotechnology, quantum technology
- other names for biotechnology are engineering biology, synthetic biology, biological science (when discussed in context of AI)


biotech - multidisciplinary field

- sciences and technologies enabling biotechnology include, but not limited to,
 - (molecular) biology, genetics, systems biology, synthetic biology, bio-informatics, quantum computing, robotics [DFJ22]



Convergence of AI and biological design

- both Al & biological sciences increasingly converging [BKP22]
 - each building upon the other's capabilities for new research and development across multiple areas
- Demo Hassabis, CEO & cofounder of DeepMind, said of biology [Toe23]
 - ". . . biology can be thought of as information processing system, albeit extraordinarily complex and dynamic one . . . just as mathematics turned out to be the right description language for physics, biology may turn out to be the perfect type of regime for the application of AI!"
- Both AI & biotech rely on and build upon advances in other scientific disciplines and technology fields, such as nanotechnology, robotics, and increasingly big data (e.g., genetic sequence data)
 - each of these fields itself convergence of multiple sciences and technologies
- so their impacts can combine to create new capabilities

Multi-source genetic sequence data

• Al is essential to analyzing exponential growth of genetic sequence data

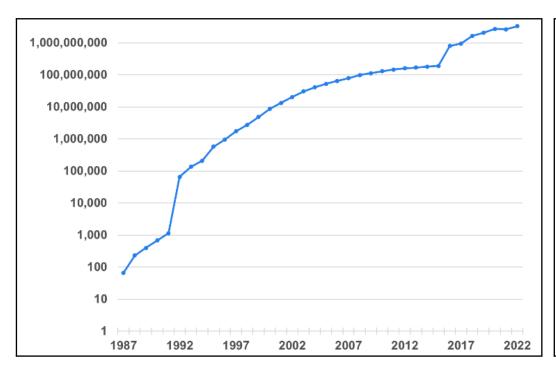
"Al will be essential to fully understanding how genetic code interacts with biological processes"

- US National Security Commission on Artificial

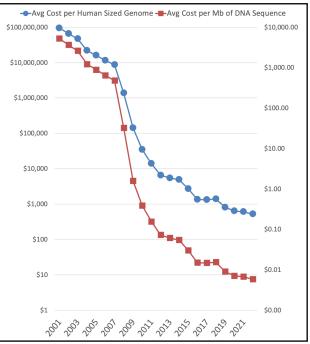
- US National Security Commission on Artificial Intelligence (NSCAI)
- process huge amounts of biological data, e.g., genetic sequence data, coming from different biological sources for understanding complex biological systems
 - sequence data, molecular structure data, image data, time-series, omics data
- e.g., analyze genomic data sets to determine the genetic basis of particular trait and potentially uncover genetic markers linked with that trait

Quality & quantity of biological data

- ullet limiting factor, however, is quality and quantity of the biological data, e.g., DNA sequences, that AI is trained on
 - e.g., accurate identification of particular species based on DNA requires reference sequences of *sufficient quality* to exist and be available
- databases have varying standards access, type and quality of information
- design, management, quality standards, and data protocols for reference databases can affect utility of particular DNA sequence


Rapid growth of biological data

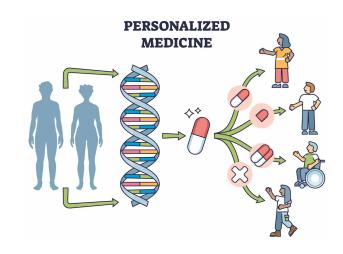
- volume of genetic sequence data grown exponentially as sequencing technology has evolved
- more than 1,700 databases incorporating data on genomics, protein sequences, protein structures, plants, metabolic pathways, etc., e.g.
 - open-source public database
 - Protein Data Bank, US-funded data center, contains more than terabyte of three-dimensional structure data for biological molecules, including proteins, DNA, and RNA
 - proprietary database
 - Gingko Bioworks possesses more than 2B protein sequences
 - public research groups
 - Broad Institute produces roughly 500 terabases of genomic data per month
- great potential value in aggregate volume of genetic datasets that can be collectively mined to discover and characterize relationships among genes


Volume and sequencing cost of DNA over time

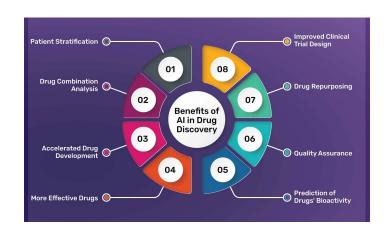
- volume of DNA sequences & DNA sequencing cost
 - data source: National Human Genome Research Institute (NHGRI) [Wet23] & International Nucleotide Sequence Database Collaboration (INSDC)

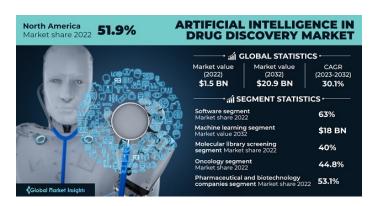
sequences in INSDC

DNA sequencing cost


Bio data availability and bias

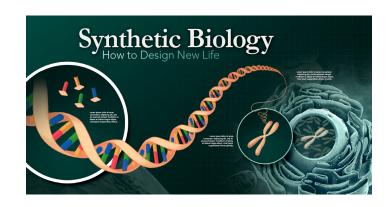
- US National Security Commission on Artificial Intelligence (NSCAI) recommends
 - US fund and prioritize development of a biobank containing "wide range of high-quality biological and genetic data sets securely accessible by researchers"
 - establishment of database of broad range of human, animal, and plant genomes would
 - enhance and democratize biotechnology innovations
 - facilitate new levels of Al-enabled analysis of genetic data
- ullet bias availability of genetic data & decisions about selection of genetic data can introduce bias, e.g.
 - training Al model on datasets emphasizing or omitting certain genetic traits can affect how information is used and types of applications developed - potentially privileging or disadvantaging certain populations
 - access to data and to AI models themselves may impact communities of differing socioeconomic status or other factors unequally

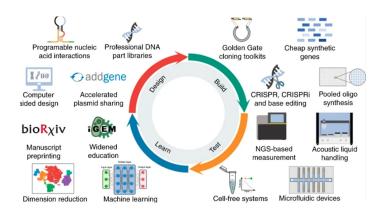

Emerging Trends in Biotech


Personalized medicine

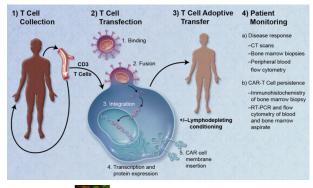
- shift from one-size-fits-all approach to tailored treatments
- based on individual genetic profiles, lifestyles & environments
- Al enables analysis of vast data to predict patient responses to treatments, thus enhancing efficacy and reducing adverse effects
- e.g., custom cancer therapies, personalized treatment plans for rare diseases & precision pharmacogenomics.
- companies Tempus, Foundation Medicine, etc.

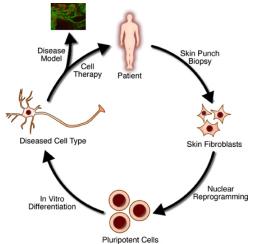
Al-driven drug discovery



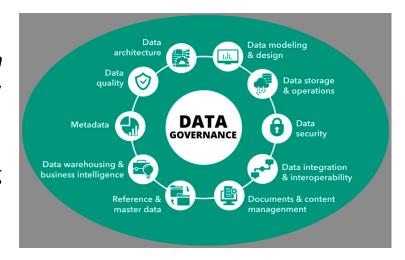


- traditional drug discovery process timeconsuming and costly often taking decades and billions of dollars
- Al streamlines this process by predicting the efficacy and safety of potential compounds with more speed and accuracy
- Al models analyze chemical databases to identify new drug candidates or repurpose existing drugs for new therapeutic uses
- companies Insilco Medicine, Atomwise.


Synthetic biology


- use AI for gene editing, biomaterial production and synthetic pathways
- combine principles of biology and engineering to design and construct new biological entities
- Al optimizes synthetic biology processes from designing genetic circuits to scaling up production
- company Ginkgo Bioworks uses AI to design custom microorganisms for applications ranging from pharmaceuticals to industrial chemicals

Regenerative medicine



- Al advances development of stem cell therapies & tissue engineering
- Al algorithms assist in identifying optimal cell types, predicting cell behavior & personalized treatments
- particularly for conditions such as neurodegenerative diseases, heart failure and orthopedic injuries
- company Organovo leverages AI to potentially improve the efficacy and scalability of regenerative therapies, developing next-generation treatments

Bio data integration

- integration of disparate data sources, including genomic, proteomic & clinical data - one of biggest challenges in biotech & healthcare
- Al delivers meaningful insights only when seamless data integration and interoperability realized
- developing platforms facilitating comprehensive, longitudinal patient data analysis - vital enablers of AI in biotech
- company Flatiron Health working on integrating diverse datasets to provide holistic view of patient health

Biotech companies

- Atomwise small molecule drug discovery
- Cradle protein design
- Exscientia precision medicine
- Iktos small molecule drug discovery and design
- Insilico Medicine full-stack drug discovery system
- Schrödinger, Inc. use physics-based models to find best possible molecule
- Absci Corporation antibody design, creating new from scratch antibodies, i.e., "de novo antibodies", and testing them in laboratories

Selected References & Sources

Selected references & sources

- Daniel Kahneman, Thinking, Fast and Slow, 2011
- T. Kuiken, Artificial Intelligence in the Biological Sciences: Uses, Safety, Security, and Oversight, 2023
- S. Yin, et. al., A Survey on Multimodal LLMs, 2023
- M. Shanahan, Talking About Large Language Models, 2022
- A. Vaswani, et al., Attention is all you need, NeurIPS, 2017
- I.J. Goodfellow, . . . , Y. Bengio, Generative adversarial networks (GAN), 2014
- A.Y. Halevry, P. Norvig, and F. Pereira. Unreasonable Effectiveness of Data, 2009
- Stanford Vecture Investment Groups
- CEOs & CTOs @ starup companies in Silicon Valley
- VCs on Sand Hill Road Palo Alto, Menlo Park, Woodside in California

References

References

- [BKP22] Abhaya Bhardwaj, Shristi Kishore, and Dhananjay K. Pandey. Artificial intelligence in biological sciences. *Life*, 12(1430), 2022.
- [DFJ22] Thomas A. Dixon, Paul S. Freemont, and Richard A. Johnson. A global forum on synthetic biology: The need for international engagement. *Nature Communications*, 13(3516), 2022.
- [HGH⁺22] Sue Ellen Haupt, David John Gagne, William W. Hsieh, Vladimir Krasnopolsky, Amy McGovern, Caren Marzban, William Moninger, Valliappa Lakshmanan, Philippe Tissot, and John K. Williams. The history and practice of Al in the environmental sciences. *Bulletin of the American Meteorological Society*, 103(5):E1351 E1370, 2022.
- [HM24] Guadalupe Hayes-Mota. Emerging trends in Al in biotech. Forbes, June 2024.
- [HNF09] Alon Halevy, Peter Norvig, and Nanediri Fernando. The unreasonable effectiveness of data. *Intelligent Systems, IEEE*, 24:8 12, 05 2009.

[Kah11] Daniel Kahneman. *Thinking, fast and slow*. Farrar, Straus and Giroux, New York, 2011.

- [Kui23] Todd Kuiken. Artificial intelligence in the biological sciences: Uses, safety, security, and oversight. *Congressional Research Service*, Nov 2023.
- [MLZ22] Louis-Philippe Morency, Paul Pu Liang, and Amir Zadeh. Tutorial on multimodal machine learning. In Miguel Ballesteros, Yulia Tsvetkov, and Cecilia O. Alm, editors, Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts, pages 33–38, Seattle, United States, July 2022. Association for Computational Linguistics.
- [Say21] Kelley M. Sayler. Defense primer: Emerging technologies. *Congressional Research Service*, 2021.
- [Sha23] Murray Shanahan. Talking about large language models, 2023.
- [Toe23] Rob Toews. The next frontier for large language models is biology. *Forbes*, July 2023.
- [Wet23] Kris A. Wetterstrand. Dna sequencing costs: Data, 2023.

[YFZ⁺24] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal large language models, 2024.

Thank You